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Abstract. In this contribution we present how to implement the calculation of average field 

fluctuations inside the grains of a thermoelastic aggregate in terms of the derivatives of the stress 
potential given by the standard linear self-consistent (SC) model, and how this statistical 
information can be used to generate second-order estimates for the mechanical behavior of non-
linear viscoplastic polycrystals, by means of a rigorous non-linear homogenization procedure. To 
illustrate the differences between this second-order (SO) self-consistent approach and the classical 
first-order SC approximations, we compare them in terms of their predictions of the effective 
behavior of random fcc polycrystals as a function of their rate-sensitivity, and of the texture 
evolution in hcp ice polycrystals under uniaxial compression. In the latter case, the SO 
approximation is the only one able to predict a substantial accommodation of deformation by basal 
slip, even when the basal poles become strongly aligned with the compression direction and the 
basal slip systems became unfavorably oriented.  

Introduction 

The computation of the large strain mechanical behavior and the texture evolution of viscoplastic 
polycrystals using self-consistent models is nowadays a standard approach within the texture 
community. For this, several ‘classical’ SC approximations for non-linear materials are available 
(e.g. the secant [1], tangent [2,3] and affine [4] formulations), all of them based on linearization 
schemes at the local level that use information on field averages only, disregarding higher-order 
statistical information in the grains. However, the above assumption may be questionable for 
single-phase aggregates with low rate-sensitivity, or made of highly anisotropic grains, or for 
multiphase polycrystals. In all these cases, a strong directionality and large variations in local 
properties are to be expected. The non-dependence with higher-order statistical moments is 
particularly critical for the treatment of highly-contrasted materials, since such information is 
essential to capture—in an average sense—the effect of the strong deformation gradients that are 
likely to develop inside grains which are strongly non-linear, highly anisotropic, or adjacent to 
another phase. Consequently, when applied to materials with high contrast, the above first-order SC 
approaches can lead to large differences in the predicted behavior and microstructural evolution.  

To overcome the above limitations, in this work we first present how to implement the 
calculation of average field fluctuations inside the grains of a thermoelastic aggregate in terms of 
the derivatives of the stress potential, which has to be determined by means of the standard SC 
model for linear polycrystals. In turn, the above statistical information can be used to generate more 
refined estimates for non-linear viscoplastic polycrystals by means of the variational second-order 
(SO) method of Ponte Castañeda [5]. Briefly, this rigorous non-linear homogenization procedure 
consists in expressing the effective potential of a non-linear viscoplastic polycrystal in terms of that 
of a linearly viscous polycrystal with properties that depend on the first- and second-order moments 
in the grains, and are determined from suitably-designed variational principles. 

Finally, to illustrate the differences between the different SC approaches we compare the above 
first-order and second-order formulations in terms of their predictions of the effective behavior of 



 
 

 

random fcc polycrystals, as a function of their rate-sensitivity, and of the texture evolution in hcp 
ice polycrystals under uniaxial compression. 

Theory 

In what follows, all the tensors are symmetric and represent incompressible magnitudes or 
properties. Therefore, they can be represented using the symmetric ‘b-basis’ components [6] where 
2nd and 4th rank tensors are represented by 5-dim vectors and 5x5 matrices, respectively. 

Self-consistent approximation for linear polycrystals. The effective behavior of a generalized 
linear ‘thermoelastic’ polycrystal is characterized by a stress potential TU~  that may be written in 
the form [7]: 
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such that e~M~E , where  is the macroscopic stress, E should be interpreted as the 
macroscopic strain (in the case of an actual thermoelastic material) or strain-rate (for a linearly 
viscous material), and 
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where  is the volume fraction associated with grain (r),  and e  are the local compliance 
and back-extrapolated term of grain (r) (such that ), and  and  are the 
stress concentrations tensors of grain (r), i.e. 
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where )r(σ  is the average stress of grain (r). Explicitly, the SC expressions of the tensors above are 
given by [8]: 
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where the interaction tensor  is given by: *M

( ) M~SSIM 1* ⋅⋅−= − ,                                                                                                                     (5) 

with S being the Eshelby tensor, a function of M~ and the grain-shape. 
Second-order moments of the stress field. The average second-order moment of the stress over 

grain (r) is given by [7]: 
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Working with Eqs. (2)1, (4) and (5), the first derivative in the right term can be obtained solving 
the following equation [9]: 
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where  and π  are given in the Appendix. Expression (7) is a linear system of 25 

equations with 25 unknowns (i.e. the components of 
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given value of the Eshelby tensor derivatives . This a priori unknown derivative can be 

calculated in terms of the also unknown 
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In turn, the other two derivatives appearing in Eq. (6) can be calculated as [9]:  

( )
)r(

uv

kl
ikl

uv,r
i)r(

uv

i
M
M~

M
e~

∂

∂
ζ+θ=

∂

∂  ,  ( )
)r(

uv

i
i

uv,r
)r(

uv M
e~

M
g~

∂

∂
ϑ+η=

∂

∂ ,                                                       (8) 

where iklζ , ϑ , θ and  are given in the Appendix. i
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Non-linear self-consistent extensions. Every non-linear extension of the SC formulation is 
based on a linearization of the actual non-linear local behavior. In the case of an aggregate of single 
crystal grains deforming by dislocation glide, the non-linear rate-sensitivity constitutive relation is 
approximated by: 
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where ( )  and  are the critical stress and the Schmid tensor associated with slip system (k), )k(oτ
)r(
)k(µ

oγ  is a normalization factor, and n is the rate-sensitivity exponent. If ( )rM  and e  are chosen to 

be certain functions of the average stress 

)r(

)r(σ  in grain (r), the corresponding non-linear SC 

extension is known as a first-order approximation. Otherwise, if both )r(σ  and )r(
σ⊗σ are 

involved in the determination of   and , the resulting SC approach becomes a second-order 

approximation.  
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First-order SC approximations. The three classical first-order approximations correspond to 
the following assumptions: 
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In the case of the tangent approximation,  and e . However, instead of 
using expressions (11) in the self-consistent equations (2), use is made of the secant scheme to get 
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the interaction tensor as: 
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This algorithmic difference makes the tangent formulation tend to the lower-bound at low rate-
sensitivities. 

Second-order procedure. Once the average second-order moments of the stress field over each 
grain are obtained by means of the calculation of the derivatives appearing in Eq. (6), the 
implementation of the SO procedure follows the work of Liu and Ponte Castañeda [7]. The 
covariance tensor of stress fluctuations is given by: 
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The average and the average fluctuation of resolved shear stress on slip system (k) of grain (r) is 
given by: 
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where the positive (negative) branch should be selected if )r(
)k(τ  is positive (negative). The slip 

potential of slip system (k) in every grain is defined as: 
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Two scalar magnitudes associated with each slip system (k) of each grain (r) are defined by: 
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where . The linearized local behavior associated with grain (r) is then given 

by , where: 
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The SO procedure requires iterating over M  to derive improved estimations of a 
linear comparison polycrystal. Each of these polycrystals has associated different first- and second-
order moments of the stress field in the grains. These statistical moments can be used to obtain new 
values of , which in turn define a new linear comparison polycrystal, etc. This 

convergence procedure is terminated when the input and output values of  coincide 

within a certain tolerance. 
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Results 

Effective behavior of random fcc polycrystals. The prediction of the effective properties of a 
random fcc polycrystal as the rate-sensitivity of the material decreases is a classical benchmark for 
the different non-linear SC extensions. Figure 1 shows a comparison between Taylor Factor (TF) 
vs. rate-sensitivity (1/n) curves, for a random fcc polycrystal under uniaxial tension. The TF was 
calculated as , where  is the threshold stress of the (111)<110> slip systems, and oeq / τΣ oτ eqΣ  is 
the macroscopic equivalent stress corresponding to an unitary applied equivalent strain-rate 

. The different curves correspond to the Taylor model, the different first-order SC 
approximations, and the second-order procedure. It can be observed that:  

1Eeq =

a) The TF curve predicted with Taylor approach is the highest, consistent with the upper bound 
status of this model. 

b)  All SC estimates coincide for n=1, i.e. the linear SC case. 
c) For high and moderate rate-sensitivities, the SO procedure gives the lowest TF among the SC 

approaches. This is the reflection of an effective softer behavior at grain level that occurs when 
field fluctuations are considered for the determination of the linearized behavior of the grains. 

d) In the rate-insensitive limit, while the secant and the tangent models tend respectively to the 
upper bound (Taylor) and the lower bound (i.e. TF=2.2 for 1 ), the affine and SO 
approximations give intermediate results.  
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Figure 1: Taylor Factor vs. rate-sensitivity, for a random fcc polycrystal under unixial tension, as predicted 
with the Taylor model, several first-order SC approximations, and the second-order procedure. 



 
 

 

Texture evolution in ice polycrystals. Due to the very large plastic anisotropy of hcp ice (i.e. 
while almost all the deformation in the single crystals is carried by basal dislocations, basal slip 
provides only two independent slip systems), the prediction of texture development of 
polycrystalline ice is a challenging problem serving to discriminate among the various SC 
approaches. Moreover, a better understanding of the deformation mechanisms and the 
microstructural evolution of ice deforming in compression is relevant in glaciology, since 
compression (together with shear) is one of the main deformation modes of glacier ice. In what 
follows, we will use the basal texture factor along the axial direction (defined as the weighted 
average of the projections of the c-axis along that direction) to characterize the evolving texture of 
ice in compression. 
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Figure 2: Basal texture factor along the compression direction, effective stress, relative basal activity, and the 
average number of active slip systems per grain. Case of compression of an initially random ice polycrystal 
with  and [11], as predicted with the tangent, affine and second-order SC 

approaches.  
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On the one hand, the ‘stiff’ Taylor and SC secant models are not suitable to simulate plastic 

deformation of polycrystalline ice because the strong constraints that these models impose upon 
strain are incompatible with the shortage of independent slip systems in ice. On the other hand, the 
compression textures of ice typically exhibit a strong basal pole maximum along the axial direction 
[11]. The formation of this maximum is related with the crystallographic plastic rotations associated 
with basal slip. However, as the basal poles become aligned with the axial direction, the basal slip 
systems become unfavorably oriented to accommodate deformation. Therefore, at large strains, 
even a ‘soft’ model like the tangent SC fails in reproducing the observed texture, with only basal 
slip [11]. Up to now, the oversimplified Sachs model (which completely disregards strain 
compatibility) has been the only approach able to give a reasonable effective behavior with 
predominant basal slip at large strains, when the basal texture along the compressive direction 
becomes very strong. 

For comparison between the different SC approaches, Fig. 2 shows the compression texture 
evolution (in terms of the basal texture factor along the axial direction), the effective stress, the 
relative basal activity, and the average number of active slip systems per grain, for the case of an 
initially random ice polycrystal, under the assumption of  and , where  

,  and  are the critical stresses of the 
bas20pr τ×=τ bas200pyr τ×=τ

basτ prτ pyrτ ( ) 11200001  basal, { } 11201010  prismatic and 
{ } 11231122  pyramidal slip modes, respectively, as reported in [11]. 

As expected, all models predict an increase of the basal texture factor along the axial direction, 
and a progressive geometric hardening. The tangent and the affine SC models predict the fastest and 
the slowest alignment of basal poles along the compression direction. This is consistent with the 
initial highest basal activity predicted by the tangent model, followed by the ones obtained with the 
SO and the affine formulations. However, at around 0.8 strain, the tangent results show a sudden 
drop in the basal activity, together with an increase in the effective stress (not attributable to 
geometric hardening only) and in the number of active deformation systems. All this indicates that, 
at large compressive deformation, the strain accommodation starts requiring the activation of the 
200 times harder pyramidal systems. In other words, under the tangent SC approach, the basal slip 
by itself is not enough to accommodate the compressive deformation when the basal poles become 
strongly aligned with the compression direction.  

The SO results are superior to the affine results, since the deformation takes place at higher basal 
activities, and also to the tangent results, since the SO model does not require the activation of the 
hard pyramidal mode, even after the texture factor reaches the value at which the tangent model 
predictions start to deteriorate. 

This superior performance of the second-order SC approximation can be explained in terms of its 
intrinsic adaptability to microstructural changes. Figure 3 shows the evolution (as predicted with 
the SO formulation) of the normalized standard deviation (SD) of the equivalent stress and strain 
rate over the whole polycrystal, defined as: 
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where second-order moments in grain (r) are given by: 
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Figure 3: Evolution of the normalized standard deviations of the equivalent stress and strain rate, as predicted 
with the SO formulation, for the case of compression of ice. 

 
Note that the above magnitudes are indicators not only of intergranular, but also of intragranular 

heterogeneity. Evidently, as the basal texture concentrates along the axial direction, the stress 
becomes more uniform and the strain rate becomes more heterogeneous. This trend towards a 
uniform stress state obviously indicates a trend towards the Sachs hypothesis. Therefore, given that 
the fluctuation information is contained in the SO formulation, the SO results should come closer to 
Sachs as deformation proceeds, allowing a substantial accommodation of deformation by basal slip 
at those large strains. 

Summary 

A methodology for the calculation of second-order moments of the mechanical fields inside the 
grains of a polycrystal, within the framework of SC models, has been given. Using the stress 
second-order moments inside the grains, the second-order SC procedure was implemented, and its 
results where compared with other SC approximations for the cases of the effective properties of 
random fcc aggregates with different rate sensitivities, and for the texture evolution of ice 
polycrystals under compression. In the latter case, the SO model predicts a substantial 
accommodation of deformation by basal slip, even when the basal poles became strongly aligned 
with the compression direction and the basal slip systems became unfavorably oriented.  
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Appendix 

Defining the following auxiliary magnitudes: 
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the coefficients in Eqs.(7) and (8) are [9]: 
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